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Abstract:Data Explosion is the major challenge which our 
information industry is facing everyday. As World Wide Web 
has lots of data there is a need for discovery & analysis of 
useful information over the web. For this, we use web access 
pattern which is sequence of accesses followed by users 
frequently. Finding Web access pattern comes under 
sequential pattern mining which is the process of applying 
data mining technique to sequential database in order to 
discover co-relation relationship that exist among ordered list 
of events. Web access pattern tree (WAP) can be used to 
analyze web log access sequences, which first store the original 
web access sequences database on a pre-fix tree then WAP 
tree algorithm mine the frequent sequences from the WAP-
tree in recursive manner by reconstructing intermediate tree 
starting with suffix sequences & ends with prefix sequences . 
We have an attempt to improve the efficiency of WAP tree 
approach. In Binate code WAP , We totally eliminate the need 
to reconstruct number of intermediate WAP-tree so that we 
can reduces execution time considerably.  
 
Keywords: WAP tree, data mining, sequential data mining, 
frequent pattern tree 

 
1 INTRODUCTION 

 
Data Mining is the non-trivial process of identifying valid, 
novel, potentially useful, and ultimately understandable 
patterns in data. With the wide spread use of databases and 
the explosive growth in their sizes, organization are faced 
with the problem of information overload. The problem of 
effectively utilizing these massive volumes of data is 
becoming a major problem for all enterprises.  
Traditionally, we have been using data for querying a 
reliable databases repository via some well-circumscribed 
application for canned report-generating utility. While this 
mode of interaction is satisfactory for a large class of 
applications, there exist many other applications which 
demand exploratory data analyses. These applications 
support query-triggered usage of data, in the sense that the 
analysis is based on a query posed by a human analyst. On 
the other hand, data mining techniques support automatic 
exploration of data. Data mining attempts to source out 
patterns and trends in the data and infers rules from these 
patterns. With these rules the user will be able to support, 
review and examine decisions in some related business or 
scientific area. This opens up the possibility of a new way 
of interacting with databases and data warehouses.  
Sequential mining is the process of applying data mining 

techniques to a sequential database for the purposes of 
discovering the correlation relationships that exist among 
an ordered list of events.  
The objective of this work is to apply data mining 
techniques to a sequential database for the purposes of 
discovering the correlation relationships that exist among 
an ordered list of events. Given a WASD (Web Access 
Sequence Database),the problem to find frequently 
occurring Sequential patterns on the basis of minimum 
support provided. The application of sequential pattern 
mining are in areas like Medical treatment, science & 
engineering processes, telephone calling patterns. 
Sequential pattern mining Web usage mining for automatic 
discovery of user access patterns from web servers. It is 
used by an e-commerce company, this means detecting 
future customers likely to make a large number of 
purchases, or predicting which online visitors will click on 
what commercials or banners based on observation of prior 
visitors who have behaved either positively or negatively to 
the advertisement banners. 
 

2. BACKGROUND  
Sequential Pattern Mining comes in Association rule 
mining. For a given transaction database T, an association 
rule is an expression of the form X Y, where X and Y are 
subsets of A and X Y holds with confidence , if % of 
transactions in D that support X also Y. The rule X Y has 
support in the transaction set T if % of transactions in T 
support X U Y. Association rule mining can be divided into 
two steps. Firstly, frequent patterns with respect to support 
threshold min sup are mined. Secondly association rules are 
generated with respect to confidence threshold minimum 
confidence. Pattern Mining is of two types:  
[1] Non Sequential Pattern Mining: The items occurring 
in one transaction have no order.  
[2] Sequential Pattern Mining: The items occurring in 
one transaction have an order between the items (events) 
and an item may re-occur in the same sequence.  
WAP-tree, which stands for web access pattern tree. The 
main steps involved in this technique are summarized next. 
The WAP-tree stores the web log data in a prefix tree 
format similar to the frequent pattern tree (FP-tree) for non-
sequential data. The algorithm first scans the web log once 
to find all frequent individual events. Secondly, it scans the 
web log again to construct a WAP-tree over the set of 
frequent individual events of each transaction. Thirdly, it 
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finds the conditional suffix patterns. In the fourth step, it 
constructs the intermediate conditional WAP-tree using the 
pattern found in previous step. Finally, it goes back to 
repeat Steps 3 and 4 until the constructed conditional 
WAP-tree has only one branch or is empty. 
 

TID Web Access sequence 
Frequent 

Subsequence 
100 pqspr  pqpr 
200 tptqrp  pqrp 
300 opqupt  qpqp 
400 puqprur  pqprr 

Table 1. Sequence database for WAP-tree 
 
Thus, with the WAP-tree algorithm, finding all frequent 
events in the web log entails constructing the WAP-tree 
and mining the access patterns from the WAP tree. The 
web log access sequence database in Table 1 is used to 
show how to construct the WAP-tree and do WAP-tree 
mining. Suppose the minimum support threshold is set at 
75%, which means an access sequence, s should have a 
count of 3 out of 4 records in our example, to be considered 
frequent. Constructing WAP-tree, entails first scanning 
database once, to obtain events that are frequent. When 
constructing the WAP-tree, the non-frequent part of every 
sequence is discarded. Only the frequent sub-sequences are 
used as input. For example, in Table 1, the list of all events 
is p, q, r, s, t, u and the support of p is 4, q is 4, r is 3, s is 1, 
t is 2, and u is 2.With the minimum support of 3, only p, q, 
r are frequent events. Thus, all non-frequent events (like s, 
t, u ) are deleted from each transaction sequence to obtain 
the frequent subsequence shown in column 3 of Table 1.  
With the frequent sequence in each transaction, the WAP-
tree algorithm first stores the frequent items as header 
nodes so that these header nodes will be used to link all 
nodes of their type in the WAP-tree in the order the nodes 
are inserted. When constructing the WAP tree, a virtual 
root (Root) is first inserted. Then, each frequent sequence 
in the transaction is used to construct a branch from the 
Root to a leaf node of the tree. Each event in a sequence is 
inserted as a node with count 1 from Root if that node type 
does not yet exist, but the count of the node is increased by 
1 if the node type already exists. Also, the head link for the 
inserted event is connected (in broken lines) to the newly 
inserted node from the last node of its type that was 
inserted or from the header node of its type if it is the very 
first node of that event type inserted. For example, as 
shown in figure 1(a), to insert the first frequent sequence 
pqpr of transaction ID 100 of the example database, since 
there is no node labeled p yet, which is a direct child of the 
Root, a left child of Root is created, with label p and count 
1. Then, the header link node for frequent event p is 
connected (in broken lines) to this inserted a node from the 
p header node. The next event q is inserted as the left child 
of node p with a count of 1 and linked to header node q, the 

third event p is inserted as the left child of the node q 
having a count of 1, and the p link is connected to this node 
from the inserted p. The fourth and last event of this 
sequence is r and it is inserted as the left child of the second 
p on this branch with a count of 1 and a connection to r 
header node. Secondly, insert the sequence pqrp of the next 
transaction with ID 200, starting from the virtual Root 
(figure 1(b)). Since the root has a child labeled p, the node 
p’s count is increased by 1 to obtain (p: 2). similarly, (q: 2) 
is also in the tree. The next event, r, does not match the 
next existing node p, and new node r:1 is created and 
Inserted as another child of q node. The third sequence 
qpqp of ID 300 and the fourth sequence pqprr are inserted 
next to obtain figure 1(c) and (d) respectively.  
Once the sequential data is stored on the complete WAP-
tree (figure 1(d)), the tree is mined for frequent patterns 
starting with the lowest frequent event in the header list, in 
our example, starting from frequent event r as the following 
discussion shows. From the WAP-tree of figure 1(d), it first 
computes prefix sequence of the base r or the conditional 
sequence base of c as: pqp:2; pq:1; pqpr:1; pqp:-1.  
 

  
 
WAP-tree|r, is built using the same method as shown in 
figure 1. The new conditional WAP-tree is shown in figure 
2(a). Recursively, based on the WAP-tree in figure 2(a), the 
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next conditional sequence base for the next suffix 
subsequence, qr is found as p(3). With p as the only 
frequent pattern in this base, the frequent sequence base of 
qr used to construct the next WAP tree shown in figure 2(b) 
is p(3). This ends the re-construction of WAP trees that 
progressed as suffix sequences |r, |qr and the frequent 
patterns found along this line are r, qr and pqr. The 
recursion continues with the suffix path |r, |pr. Thus, the 
conditional sequence base for suffix pr is computed from 
figure 2(a) as Ø, pq:3. This list is used to construct the 
WAP tree of figure 2(c). The algorithm keeps running, 
finding the conditional sequence bases of qpr as p: 3. from 
the list, the conditional frequent events of pqr is only p: 3. 
Then, the conditional WAP-tree|qpr is built as shown in 
figure 2(d). Now back to completing the mining of frequent 
patterns with suffix pr, figure 2(c) is mined for conditional 
sequence bases for suffix ppr and we get NULL. 
The conditional search of r is now finished. The search for 
frequent patterns that have the suffix of other header 
frequent events (starting with suffix base |q and then |p) are 
also mined the same way the mining for patterns with 
suffix r is done above. After mining the whole tree, 
discovered frequent pattern set is: {r, qpr, pqpr, pr, pqr, qr, 
qb, pq, p, pp, qp, pqp}. 

 
Figure 2. Reconstruction of WAP trees for mining 

conditional pattern base r. 
 
 

3. RELATED WORK 
3.1 Binary Coded Web   Access   Pattern   tree  
Approach) 
The tree data structure, similar to WAP-tree, is used to 
store access sequences in the database, and the 
corresponding counts of frequent events compactly, so that 
the tedious support counting is avoided during mining. A 
Binary code is assigned to each node in modified WAP-
tree. These codes are used during mining for identifying the 
position of the nodes in the tree. The header table is 
constructed by linking the nodes in sequential events 
fashion. Here the linking is used to keep track of nodes 
with the same label for traversing prefix sequences. This 
mining algorithm is prefix sequence search rather than 
suffix search. 
3.2 The Algorithm  
Input : Access sequence database D(i), min support MS (0< MS ≤ 
1)   
Output : frequent sequential patterns in D(i).  
Variables : Cn stores total number of events in suffix trees, A 
stores whether a node is ancestor in queue.  
Begin  
Scan D(i) to   discover frequent individual events L;   
Scan D(i) again .Create a root node of Tree T.   
code(root)= NULL;   
count = 0; {   
For ( each access sequence, fs in D(i)) {  
Extract frequent subsequence F=(fs1fs2  . . . fsn) by removing all 
events that are not in L;   
current node -> leftmost_Child(root);   
for ( k=1 to n   ) {   
if (current node = NULL)   
{Create a new child node with position code equal to “1” 
appended   
To position code of parent of current node ;} 
elseif (current node = fsk ) { NdFd =   true ;}  
else { make current node point to current node sibling}   
}   
if (NdFd = true)   
{count (fsk) ++;  
Make current node point to fsk ;}  
Else {create new child node with position code of current node 
with   
“0” appended at the end;   
Make current node point to new created node ;} } }   
From root node, do a sequential Traversal of Tree T to make 
appropriate linkage queue;   
PATTERN_DIS (Suffix tree roots STR, Frequent sequence FS);   
end;  
PATTERN_DIS(R, F) {   
If (STR=empty) return;   
for (each suffix tree of event in L) {  
Save first event in ei    queue to A;  
if (event ei   is descendent of any event in STR, and is not 
descendent of A)  
{Insert ei suffix tree header set STR’;   
Add count of ei   to Cn; 
Replace the A with ei. ; }  
If(Cn > MS )   
{Append ei after FS to FS’;   
print (FS’);   
PATTERN_DIS (STR’,FS’); } 
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4 EXPERIMENTAL RESULTS  
This experiment uses fixed size database and different 
minimum support .The datasets and algorithms are tested 
with minimum supports between 0.8% and 10% against the 
60 thousand (60 K) database. 
 
From Table 2 and figure 7, it can be seen that 
 

 time in secs at different supports 
Algorithms 2 3 4 5 10 

WAP 745 505 325 285 145 
Modified 225 150 100 94 47 

WAP      
Table 2. Execution times for dataset at different minimum 

supports. 
The execution time of every algorithm decreases as the 
minimum support increases. This is because when the 
minimum support increases, the number of candidate 
sequence decreases. Thus, the algorithms need less time to 
find the frequent sequences. The modified WAP algorithm 
always uses less runtime than the WAP algorithm. WAP 
tree mining incurs higher storage cost (memory or I/O). 
Even in memory only systems, the cost of storing 
intermediated trees adds appreciably to the overall 
execution time of the program. It is however, more realistic 
to assume that such techniques are run in regular systems 
available in many environments, which are not memory 
only,but could be multiple processor systems sharing 
memories and CPU’s with virtual memory support. 
 
 
 
 
 
 
 
 

 
 

Figure 3. Execution times trend with different minimum 
supports. 

 
Now, databases with different sizes from 20 K to 100 K 
with the fixed minimum support of 7% are used. 
  

 Different changed transaction size 

Algorithms 20k 40k 60k 80k 100k 
time in sec      

WAP 146 264 310 440 535 

Modified 45 72 95 141 175 

WAP       
Table 3. Execution times trend with different data sizes. 

 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4. Execution times trend with different data sizes. 
 

5 CONCLUSION  
In this paper, we analyze the problem of sequential pattern 
mining. Here after discussing the two approached it is clear 
that the modified version is more efficient than the web 
access pattern tree approach. This presents a discussion of 
the advantages and disadvantages of both approaches 
conducted by comparing the performance with help of 
graph. 
The modified algorithm eliminates the need to store 
numerous intermediate WAP trees during mining. Since 
only the original tree is stored, it drastically cuts off huge 
memory access costs, which may include disk I/O cost in a 
virtual memory environment, especially when mining very 
long sequences with millions of records. This algorithm 
also eliminates the need to store and scan intermediate 
conditional pattern bases for re-constructing intermediate 
WAP trees. This algorithm uses the pre-order linking of 
header nodes to store all events ei in the same suffix tree 
closely together in the linkage, making the search process 
more efficient. A simple technique for assigning position 
codes to nodes of any tree has also emerged, which can be 
used to decide the relationship between tree nodes without 
repetitive traversals. 
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